
System Architectures
Reactive Architecture Fundamentals

Jonathan Thaler

Department of Computer Science

1 / 44



Motivation

In 2011, due to a security breach Sony decided to take their Playstation Network
down for 23 days. Sony offered a number of compensations to the players.

In 2015 HSBC (British Bank) had an outtage of their electronical payment
system, which had the effect that people didn’t get paid before a holiday
weekend.

In 2015, Bloomberg, a company active in High Frequency Trading, experienced
software and hardware failures, which prevented critical trading for 2 hours.

Unresponsive services can have serious consequences!

2 / 44



10-15 years ago...

... large systems comprised of a few nodes with
the max in up to tens of nodes. Nowadays
large systems go up into the 100s and 1000s of
nodes.

... a system could be down for maintenance for
quite a while and it was no big deal. Such
behaviour is not acceptable anymore today,
and users (and other systems) expect an
uptime of up to 100%.

... data was at rest, which means it was
stored and then consumed later in a batch
process. Nowadays data is constantly
processed and changing as it is being
produced.

3 / 44



Towards Responsiveness

This dramatic shift occured due to an interplay between shifting user experience
and ever increasing bandwidth and computing power, which was able to satisfy
these expectations.

People increasingly became dependent on critical online services for their work,
for example various Google applications, GitHub,... It is simply unacceptable
that such a service is down for even a few hours.

Nowadays users expect an immediate response from services - it is simply not
acceptable to wait for a response for a few seconds, because users expect a
reaction from the service immediately, better within the very second.

There is a tremendous expectation for responsiveness.

4 / 44



Responsive Architecture

Increased bandwith and computing power alone is not enough to deliver services
which are available 24/7 with immediate responsiveness.

What is required is a proper software architecture, which exploits these
technological advances to deliver the expected user experience.

In the last years so called Reactive Architecture has turned out to be a very
viable and powerful architecture to deliver these very requirements.

The primary goal of reactive architecture is to provide an experience that is
responsive under all conditions.

5 / 44



Reactive Software System

Criterias for a reactive software system:

Scales from 10 to 10,000,000 users, which happens in start-up scenarios.

Consume only the resources necessary to support the current load. Although the
system could handle 10 million users, it should not consume the resources required
to handle 10 million users when curently only 1000 users are accessing the system.

Handles failures with little to no effect on the user. Ideally, there is no effect,
however this is not always possible but the effect should be as small as possible.

Scalability and failure handling / tolerance is achieved by distributing the
software across multiple machines. So the software must be able to be
distributed across 10s, 100s or even 1000s of machines.

When scaling across a large number of machines, maintain a consistent level of
quality and responsiveness despite the complexity of the software. Therefore,
even if the software is distributed across 10s or 100s of machines, the
responsiveness must not increase 10 or 100 fold and should stay roughly the same.

6 / 44



Reactive Principles

Reactive Principles

7 / 44



Reactive Principles

Figure: Reactive Principles

8 / 44



Reactive Principles

Responsive - A reactive system consistently responds in a timely fashion. It is
the most important principle and all the other principles are there to ultimately
manifest this principle.

Responsiveness is the cornerstone of usability.

It is basically not possible to provide a
responsive user experience without resilience,
elasticity and a system that is message driven.

The goal is to make it fast and responsive
whenever possible and as often as possible.

Unresponsive systems cause users to walk
away and look for alternatives, resulting in loss
of business opportunity.

9 / 44



Reactive Principles

Resilient - A reactive system remains responsive, even if failures occur.

Replication: there are multiple copies of
services running.

Isolation: services can function on their own.

Containment: failure does not propagate to
other services.

Delegation: recovery is handled by an external
component.

The key is that any failures are isolated into a
single component, They don’t propagate and
bring down the whole system.

10 / 44



Reactive Principles

Elastic - A reactive system remains responsive, despite changes to system load.

In older versions of the manifesto it was called
Scalability but was subsequently renamed to
also emphasise the need for a system to scale
down after a spike in system load.

It implies zero contention and no central
bottlenecks.

It is not possible to absolutely achieve this but
the goal is to get as close as possible.

Scaling up provides responsiveness during
peak, while scaling down improves cost
effectiveness.

11 / 44



Reactive Principles

Message Driven - A reactive system is built on a foundation of asynchronous,
non-blocking messages.

In older versions of the manifesto it was called
Event-Driven but was subsequently renamed
to avoid confusion with certain connotations of
the term.

Enables all the other principles and provides
loose coupling, isolation and location
transparency.

12 / 44



Reactive Principles

Reactive Systems vs. Reactive Programming

13 / 44



Reactive Systems vs. Reactive Programming

Figure: Reactive Systems vs. Reactive Programming

14 / 44



Reactive Systems vs. Reactive Programming

Reactive Systems

Apply the reactive principles on an architectural level.

Reactive systems are built using the principles from the reactive manifesto. In
such systems all major architectural components interact in a reactive way, which
are separated along asynchronous boundaries.

15 / 44



Reactive Systems vs. Reactive Programming

Reactive Programming

Can be used to support building reactive systems, but are not a necessity for
building reactive systems.

Just because reactive programming is used, it does not mean you have a re-
active system. It supports to break up the system into small discrete steps
which are then executed in an asynchrounous non-blocking fashion such as Fu-
tures/Promises, Streams, RxJava.

16 / 44



Reactive Systems vs. Reactive Programming

Actor Model

The actor model provides facilities to support all reactive principles. It is
message driven by default. The location transparency is there to support
elasticity and resilience through distribution. The elasticity and resilience then
provide responsiveness under a wide variety of circumstances.

Note that it is still possible to write a system with the Actor Model and not
be reactive. But with the Actor Model, and the tools that are based on it, it is
easier to write a reactive system.

17 / 44



Reactive Architecture

Building Scalable Systems

18 / 44



Building Scalable Systems

Scalable Systems

Building a scalable system is all about making choices between scalability, con-
sistency, and availability. The CAP theorem (see later slides) shows that we
can only have two of them at the same time.

The business side wants both but due to the CAP theorem this is not really an
option.

Therefore, a choice is made between consistency and availability. Ultimately,
making the right tradeoff between them is a business and not a technical issue.

19 / 44



Building Scalable Systems

1. Scalability A system is scalable if it can meet increases in demand while
remaining responsive. A restaurant could be considered scalable if it can meet an
increase in customers and still continue to respond to those customers needs in a
fast and efficient way.

2. Consistency A system is consistent if all members of the system have the same
view or state. In a restaurant if we ask multiple employees about the status of an
order and we get the same answers then it is consistent.

3. Availability A system is considered available if it remains responsive despite any
failures. In a restaurant if a cook accidentally burns his hand, and has to go to
the hospital, that is a failure. If the restaurant can continue to serve the
customers then the system is considered available.

20 / 44



Building Scalable Systems

Scalability

21 / 44



Building Scalable Systems: Scalability

Figure: Performance vs. Scalability

Performance optimises response time.
Scalability optimises ability to handle load.

System: takes 1 second to process one request
and can handle one request at a time.

Optimisation 1: improving the performance
to take 0.5 seconds to process 1 request.

Optimisation 2: improving the scalability to
process 2 requests in parallel.

Looking at requests-per-second does not say
which improves as it combines both
performance and scalability.

22 / 44



Building Scalable Systems: Scalability

Figure: Performance

When considering performance isolated: if
performance is improved we improve our
response time, but the number of requests
(load) may have not changed.

Performace is theoretically limited: it can
never be smaller or equal 0 due to the laws of
physics.

23 / 44



Building Scalable Systems: Scalability

Figure: Performance

Scalability improves the ability to handle load.
That pushes the graph along the x-axis, but the
performance of each request may not change.

Scalability is not theoretically limited: it
could be pushed along the x-axis forever.

Therefore, when building Reactive
Microservices the focus tends to be on
improving scalability because this can in
theory be pushed forever.

24 / 44



Building Scalable Systems: Consistency

Consistency

25 / 44



Building Scalable Systems: Consistency

Distributed systems are systems that are separated by space.

Due to the laws of phyiscs, which say that the speed by which information travels
is finite (speed of light), because of the separation by space there is always time
required to reach a consensus.

If you want two pieces of your system to agree on the state of the world then
they have to communicate with each other in order to come to some sort of
consensus.

In the time that it takes to transfer the information, the state of the original
sender may have changed.

The problem is that the receiver of information is always dealing with stale data.

In a distributed system we are always dealing with stale data. Reality is basically
eventually consistent.

26 / 44



Eventual Consistency

Eventual Consistency

Eventual consistency guarantees that in the absence of new updates all accesses
to a specific piece of data will eventually return the most recent value.

This implies that in order to reach a state of consistency you have to stop
all updates, at least for some period of time, in order to reach that level of
consistency.

Causal Consistency: causally related items will be processed in a common
order. For example if A causes B then A will always be processed before B.

Sequential Consistency: processes all items in a sequential order
regardless of whether they’re causally related. This is a stronger form than
causal consistency

27 / 44



Strong Consistency

Strong Consistency

Strong Consistency means that an update to a piece of data needs agreement
from all nodes before it becomes visible. All accesses are seen by all parallel
processes (or nodes, processors, etc.) in the same order (sequentially).

Traditional monolithic architectures are usually based around strong consis-
tency.

Often, distributed systems seem to exhibit characteristics of strong consis-
tency. This is achieved by introducing mechanisms which simulate strong con-
sistency, for example a lock.

28 / 44



Strong Consistency

Figure: Locks reduce distributed problems to
non-distributed ones.

Any two things that content for a
single limited resource are in
competition which can have only one
winner.

Others are forced to wait for the
winner to complete.

As the number of things competing
increases, the time until resources
can be freed up increases.

As load increases, we will eventually
exceed acceptable time limits. This
leads to timeouts and users leaving
the system.

29 / 44



Strong Consistency

Contention reduces the ability to parallelise (Amdahls law).

The more parallel processors we add, the more contention, which eventually re-
sults in diminishing returns, making the performance actually worse on increased
parallel processors than with less.

30 / 44



Strong Consistency

Figure: Laws of scalability.

Coherence Delay

In a distributed system, synchronising the
state of multiple nodes is done using crosstalk.

Nodes in the system will send messages to
each other informing of any state changes.

The time it takes for this synchronisation to
complete is called the Coherence Delay.

Increasing the number of nodes, increases the
coherence delay.

If coherence delay is factored in, then
increasing contention through increased
parallelism can actually result in negative
returns (Gunthers law).

31 / 44



Consistency

Reactive systems understand the limitations that are imposed by these laws.
They don’t try to avoid these limitations but accept them and minimize their
impact.

Linear scalability requires total isolation: the system needs to be basically
stateless.

Reducing contention: isolating locks, eliminating transactions, avoiding blocking
operations.

Mitigating coherence delays: embracing eventual consistency, building on
autonomy.

32 / 44



Building Scalable Systems

CAP Theorem

33 / 44



CAP Theorem

CAP Theorem

The CAP Theorem states that in a distributed system we cannot provide more
than two of the following: consistency, availability, and partition tolerance.

34 / 44



CAP Theorem

Partition Tolerance

Partition tolerance means that the system continues to operate despite an
arbitrary number of messages being dropped or delayed by the network.

In reality no distributed system is safe from partitions. Networks can go
down, nodes can go down; outages can be short or long lived.

As a consequence, sacrificing partition tolerance is not an option

35 / 44



CAP Theorem

We are left with two options:

1. AP - Sacrifice consistency, allowing
writes to both sides of the partition.

When the partition is resolved you will
need a way to merge the data in order to
restore consistency.

The system will always process the query
and try to return the most recent
available version of the information, even if
it cannot guarantee it is up to date due to
network partitioning.

36 / 44



CAP Theorem

We are left with two options:

2. CP - Sacrifice availability, disabling or
terminating one side of the partition.

During the partition, some or all of your
system will be unavailable.

The system will return an error or a
timeout if particular information cannot be
guaranteed to be up to date due to
network partitioning.

37 / 44



CAP Theorem

CA systems ignores the network,
partitioning and ultimately ignore the
fact that they are a distributed
system.

When another system communicates
with a CA system, there might be the
chance of a failure in the CA system.
Therefore, availability is not given
anymore and we are back to a CP
system, rather than a CA system.

Using replicas would not solve this
problem as then you would run into
the consistency problem, resulting in
an AP system.

38 / 44



CAP Theorem

In the absence of network failure (when the distributed system is running nor-
mally) both availability and consistency can be satisfied.

The choice between consistency and availability has to be made only when a
network partition or failure happens.

39 / 44



CAP Theorem

Systems are often consistent and partition tolerant, but have areas where they’re
not fully consistent, such as in specific edge cases.

For example, when they fail over to a replica then they sacrifice consistency, so
they’re not necessarily always consistent and just aim to be consistent in most
cases.

40 / 44



CAP Theorem

On the other hand a system might be available and partition tolerant but still
have areas where its not actually available.

For example, it might be generally available but if a certain number of nodes
fail then maybe the system become unavailable again.

41 / 44



CAP Theorem

Consistency or Availability?

42 / 44



CAP Theorem

Consistency or Availability?

The choice between consistency and availability isn’t really a technical
decision, it’s actually a business decision.

In reality, most systems balance the two concerns usually favoring one
side or the other.

The decision of when and where to sacrifice consistency or availability
should be discussed with the domain experts and product owners.

Software Developers (Architects) should talk to these people and make the
tradeoffs clear: what are the costs if high availability or strong consistency
have to be guaranteed in specific situations.

43 / 44



CAP Theorem

Ultimately, we need to factor in the impact on revenue if the system is unavail-
able vs. eventually consistent.

44 / 44


