
System Architectures
Actors: Akka

Jonathan Thaler

Department of Computer Science

1 / 13



Introduction

Most modern programming languages have an actor library nowadays,

Some languages have built actors into their core language, such as the functional
programming languages F#, Elixir Erlang.

All actor model implementations differ in subtle ways from the original concept,
for example messages arrive in sequence (at least when sent on the same
machine) and are reliable.

2 / 13



Akka

Akka

Akka is a free and open-source toolkit implemented in Scala with bindings for
Java as both run in the VM. Akka was inspired by Erlang’s actor model im-
plementation and therefore implements the actor model as well. There are two
different actor system implementations in Akka:

1. Classic is the original, first, implementation of Akka, which did not exploit
typesafety per se.

2. Typed enforces type safety of messaging and behaviors of actors to avoid
certain classes of run-time exception. Is implemented using the classic
system under the hood.

Akka is a full-blown, mature toolkit, which provides a number of advanced fea-
tures not covered in this course, such as Clustering, gRPC (Google Remote Pro-
cedure Call), HTTP, Data Streaming, Microservices, REST.

3 / 13



Akka

Event-driven model: Actors perform work in response to messages.
Communication between Actors is asynchronous, allowing Actors to send
messages and continue their own work without blocking to wait for a reply.

Strong isolation principles: unlike regular objects in Java, an Actor does not
have a public API in terms of methods that you can invoke. Instead, its public
API is defined through messages that the actor handles. This prevents any sharing
of state between Actors; the only way to observe another actor’s state is by
sending it a message asking for it.

Location transparency: the system constructs Actors from a factory and returns
references to the instances. Because location doesn’t matter, Actor instances can
start, stop, move, and restart to scale up and down as well as recover from
unexpected failures.

Lightweight: each instance consumes only a few hundred bytes, which
realistically allows millions of concurrent Actors to exist in a single application.

4 / 13



Akka

Hello World in Akka 1

1Based on https://developer.lightbend.com/guides/akka-quickstart-java/index.html
5 / 13

https://developer.lightbend.com/guides/akka-quickstart-java/index.html


Akka

1. GreeterMain: the guardian actor that
bootstraps everything.

2. Greeter: receives commands to
Greet someone and responds with a
Greeted to confirm the greeting has
taken place.

3. GreeterBot receives the reply from
the Greeter and sends a number of
additional greeting messages and
collect the replies until a given max
number of messages have been
reached.

6 / 13



Akka

Live coding...

7 / 13



Akka

Akka in relation to the Actor Model:

1. Send a finite number of messages to other Actors it knows using the tell

method from ActorRef.

2. Create a finite number of Actors provided by the
ActorContext.spawn(Behavior<U>, String).

3. Designate the behavior for the next message implicit in the signature of
Behavior in that the next behavior is always returned from the message
processing logic.

4. An ActorContext in addition provides access to the Actor’s own identity with
getSelf.

8 / 13



Akka

Hello World in Erlang

We see that a lot of ceremony is necessary in this implementation of actors. This is
due to Java’s verbosity, the difficulty of object-oriented programming to deal with
pure data and the fact that the actor model was simply not built into the Java core
language. In Erlang this example is much shorter and concise, involves not nearly as
much ceremony and is therefore much more readable.

9 / 13



Hello World Erlang

Greeter

create() ->

Pid = spawn(fun() -> process() end),

Pid.

process() ->

receive

{greet, Whom, ReplyTo} ->

io:fwrite("Hello ~s ~n", [Whom]),

ReplyTo ! {greeted, Whom, self()},

process()

end.

10 / 13



Hello World Erlang

Greeter Bot

create(Max) ->

Pid = spawn(fun() -> process(1, Max) end),

Pid.

process(Counter, Max) when Counter > Max ->

ok;

process(Counter, Max) ->

receive

{greeted, Whom, ReplyTo} ->

io:fwrite("Greeting ~w for ~s ~n", [Counter, Whom]),

ReplyTo ! {greet, Whom, self()},

process(Counter + 1, Max)

end.

11 / 13



Hello World Erlang

GreeterMain

create() ->

Greeter = greeter:create(),

Pid = spawn(fun() -> process(Greeter) end),

Pid.

process(Greeter) ->

receive

{sayHello, Name} ->

GreeterBotRef = greeterbot:create(3),

Greeter ! {greet, Name, GreeterBotRef},

process(Greeter)

end.

GreeterMain = greetermain:create(),

GreeterMain ! {sayHello, "Charles"},

receive

_ ->

ok

end.

12 / 13



Akka

Factorial in Akka 2

2https:

//homepages.fhv.at/thjo/lecturenotes/sysarch/actors.html#recursive-factorial
13 / 13

https://homepages.fhv.at/thjo/lecturenotes/sysarch/actors.html#recursive-factorial
https://homepages.fhv.at/thjo/lecturenotes/sysarch/actors.html#recursive-factorial

