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Abstract

It is shown that it is impossible for an observer to distinguish all
present states of a system in which he or she is contained, irrespective
of whether this system is a classical or a quantum mechanical one, and
irrespective whether the time evolution is deterministic or stochastic.
As a corollary, this implies that it is impossible for an observer to mea-
sure the EPR-correlations between himself or herself and and outside
system. Implications of the main result are discucced for how we have
to conceive of universally valid theories.

1 Introduction

In this paper I shall analyse the consequences of postulating universal va-

lidity for a physical theory. As far as quantum mechanics is concerned, von

Neumann assumed the theory to be universally valid and thus was led to

the measurement problem. Bohr denied the universal validity of quantum

mechanics for “purely logical reasons”, and thereby avoided confrontation

with the measurement problem. It has often (see for example Dalla Chiara

(1977), Peres and Zurek (1982), Roessler (1987), Finkelstein (1988), Pen-

rose (1989), Primas (1990)) been suggested that self-reference problems for
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universally valid theories may pose serious difficulties for a quantum mechan-

ical description of the measurement apparatus. The aim of this paper is to

investigate these suggestions.

I will say that a theory is universally valid in the absolute sense if it is

true of the whole world, without any reference to observers. In section 2

some arguments claiming that absolutely universally valid theories cannot

be deterministic will be reviewed and criticised.

In section 3 I give the central argument why no apparatus can distin-

guish all states of a system in which it is properly contained. Self-reference

properties play a crucial rôle in the argument. Whether the system is a

quantum mechanical one or a classical one, and whether the time evolution

is determinsitic or stochastic, is irrelevant.

Then in section 4 I turn to quantum mechanics and arrive at the addi-

tional conclusion that no quantum mechanical apparatus can measure the

Einstein-Podolsky-Rosen correlations between itself an external system.

In section 5 the central result is applied to the question of how we have

to conceive of universally valid theories. It leads to the conclusion that abso-

lutely universally valid theories at least partially lack operational justification

in the sense that there is no experiment able to distinguish all states. Still

an absolutely universally theory might be ontologically meaningful. From an

operational point of view, theories can at most be universally valid in a rel-

ative, observer dependent sense. This corroborates conjectures made in the

context of quantum mechanics by Peres and Zurek (1982), Roessler (1987),

Finkelstein (1988), and Primas (1990) saying that self-reference problems

might be the reason why quantum mechanics is not applicable to the ob-

server. But it shows additionally two things: Firstly, in quantum mechanics

these conclusions do not rely on the deterministic or linear character of the

time evolution. Secondly, we have similar conclusions in classical theories.
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2 Received arguments against deterministic

universally valid theories

I

Absolute universal validity. In a rather vague and strong formulation, the

thesis of absolute universal validity of a physical theory says that such a

theory is true of the whole “world”, or of the whole “universe”, without any

reference to observers. Such a theory is universally valid in the sense that

no part of the “universe” is excluded from its domain of validity. Still, I

would not like to call it a theory of everything because it need not describe

phenomena at all levels of complexity, from nuclear physics to sociology. I

call it universally valid in an absolute way because it does not make any

reference to observers.

An absolutely universally valid theory of material reality at the first sight

seems to be the ultimate goal of scientific inquiry. This was expressed for

example in the dream (or nightmare) of Laplace’s demon. If a universally

valid theory were deterministic, the demon could use it to calculate any future

state of the universe from its present state.

Popper (1950) argued that, however complete the information provided

to the demon about its own past or present state, there will always be some

questions about its own future state which the demon cannot answer. This

is the thesis of non-self-predictability. The demon can make accurate predic-

tions only about the outside world. Therefore, if one wants to maintain—in

Laplace’s spirit—that in presence of a deterministic time evolution the de-

mon should be able to predict the future of the whole universe, then one

has to exclude the demon from the universe. (This is perhaps why Laplace’s

demon is a demon. If it can make predictions about the whole universe,

but still not himself, then it must be a truly supernatural being outside

our material world. It is not just demonic because of its great calculational

abilities.) Rothstein (1964) showed that the second law of thermodynamics
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imposes restrictions on the accuracy of measurements which Maxwell’s de-

mon, considered as part of the thermodynamic system, can perform. Dalla

Chiara (1977), and Peres and Zurek (1982) presented different arguments

why a deterministic theory cannot be universally valid in the absolute sense.

They also arrive at similar conclusions: non-self-predictability is inevitable.

Every deterministic theory must admit the existence of unpredictable events

when a predictor applies it to himself. Even in classical mechanics with a

deterministic time evolution we have this kind of unpredictability.

I believe the conclusion of non-self-predictability is correct. It will follow

from the fact that no observer can obtain or store information sufficient

to distinguish all states of a system in which he is contained. (Non-self-

predictability implies that we never can fully verify the allegedly deterministic

character of an absolutely universally valid theory. Not being able to assess

whether or not the time evolution of the world is deterministic, the problem

whether free will and determinism are compatible loses some of its relevance.

But the fact that the assumption of a deterministic time evolution of the

universe cannot be checked does not mean that it is not decidable whether free

will and determinism are compatible. This may be decidable by conceptual

analysis alone.) But of course non-predictability, or non-self-predictability,

does not disprove determinism.

II

Relative universal validity. Peres and Zurek (1982) present an argument

against absolute universal validity which is particularly simple and seemingly

convincing. They argue that no physical theory can at the same time fulfil the

three requirements of absolute universal validity, experimental verifiability

and determinism.

The reason they give is the following. For the experimental verifiability

of a physical theory they regard it as a necessary condition that the experi-

menter can freely choose which experiment he is going to make. They argue
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that a universally valid theory which is deterministic precludes the free choice

of the observer and thus experimental verifiability.

To illustrate this they look at interpretations of quantum mechanics which

drop one or the other of the three requirements. Firstly, one can have univer-

sal validity and determinsm, but drop experimental verifiability. Everett’s

(1957) relative state interpretation is a theory of this kind in that the universe

is completely described by quantum mechanics and follows a deterministic

unitary time evolution. (Determinism does not hold for the single branches

of the universe.)

Secondly, one can consider theories which are universally valid and grant

the observer free choice. Such theories cannot be deterministic. Quantum

mechanics, with the observer considered as a quantum mechanical system,

and using the projection postulate to describe the measurement process,

would be such a theory. This theory applies to the apparatus as well, but

the stochastic behaviour described by the projection postulate defies deter-

minism. (Perhaps von Neumann’s (1932) quantum theory can be regarded as

such a theory. This depends on whether one wants to consider as universally

valid a theory which can perhaps describe the whole material reality, but not

the observer’s mind.)

Peres and Zurek conclude that if quantum mechanics is universally valid

at all, then it is so only in the relative sense that every observer can, per-

haps, apply it to any selected part of the world, except himself. It supposedly

applies to Schrödingers cat, Wigner’s friend and Wigner himself under the

condition that they lose their status of observer and are observed by some-

thing or somebody else. (It is not the point here whether quantum mechanics

can really be applied to every phenomenon of the external world. Quantum

theory just serves as an example of a theory which might be universally

valid.) They conclude that experimentally fully justifiable theories can be

universally at most in the relative sense.

I agree with the conclusion of Peres and Zurek, but in my view their

argument must be challenged. Firstly, I think that they are unnecessarily
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restrictive by assuming that a universally valid theory describes phenomena

at all levels of complexity, including mental phenomena like free will. This

concept of absolute universal validity is stronger than the one I use, but

of course Peres and Zurek are free to do that. Secondly, and this is more

important, they take it as granted, that an observer who is described by a

deterministic theory does not have the freedom to choose his experimental

set-up. Determinism and free will are assumed as mutually exclusive. This

may be so but it is controversial. Peres and Zurek need the assumption

of determinism only to preclude the observer in a universally valid theory

from having free will. Thereby they exclude experimental verifiability of a

universally valid deterministic theory. If determinism does not necessarily

exclude free will of the observer, then the argument fails.

But, as indicated, I think the conclusion that an absolutely universally

valid theory (even in the weaker sense I use this concept) is not fully justifiable

from an operational point of view, can be obtained with a different argument,

one where determinism has no rôle to play.

3 The central argument

In this section I am going to present an argument why it is impossible for an

observer to distinguish all states of a system in which he or she is contained.

The argument exploits self-reference properties, but it does not make any

assumptions about the character of the time evolution. It is valid for quantum

mechanical as well as for classical theories.

III

Self-reference in physical theories. Popper (1950), Rothstein (1964), Dalla

Chiara (1977), Peres and Zurek (1982), Roessler (1987), Finkelstein (1988),

Primas (1990), Mittelstaedt (1993) made allusions to a possible connection
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between self-reference properties of formal systems and restrictions on mea-

surability in universally valid theories. Since my argument will exploit self-

reference properties, let me first make some remarks about similarities and

differences between Gödel’s theorem and my argument.

Propositions about physical systems can be reformulated by saying “The

state of the system has this and this property”. So instead of speaking about

propositions we can equally well speak about sets of states: to each propo-

sition there corresponds the set of states for which the proposition is true.

The way to test propositions about physical systems is to make experiments

on the system. Good experiments give information about the state of the

system, and it can then be checked whether or not this information is com-

patible with the proposition under consideration. So good experiments serve

to at least partially constitute the semantics of physical theories. In this

sense observation is a semantic concept.

Tarski (1956, 1969) calls a language semantically closed if it contains (1)

semantic concepts and (2) expressions referring to its own propositions. The

language of a physical theory describing experiments can be closed seman-

tically: If apparatus and object system, as well as their interaction, can be

described by the theory, then the semantic concept of observation can be

introduced into the language of the theory. Also, replacing propositions by

states provides the language of the theory with expressions for its proposi-

tons. Additionally, there are propositions referring to other propositions: the

apparatus states after the experiment are not only states in their own right,

they also refer to states of the observed system. Thus one arrives at a theory

whose language is semantically closed.

The language of the formal system used by Gödel is not semantically

closed: its language does not contain any expressions referring explicitly to

metatheoretical concepts. But after assigning numbers to the propositions,

these numbers can be interpreted as expressions of the language referring to

its own propositions. Also, one observes that some propositions in the formal

system hold if and only if the system has certain properties. By interpreting
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these propositions as propositions about the system, one transfers metathe-

oretical concepts down to the level of the theory. For example provability,

restricted to meaning the existence of a formal proof, is such a metaconcept

transferred down to the level of the formal system. These two interpreta-

tional steps make it possible to intuitively regard the system as semantically

closed, although strictly speaking it is not.

In a semantically closed language it is possible to formulate self-referential

propositions. The self-reference may be paradoxical or consistent. In the

formal system used by Gödel a self-referential proposition with the following

intuitive meaning is formulated: “This proposition is not provable.” The

formal expression of this is the Gödel formula. It is neither refutable nor

provable within the formal system. (This is Gödel’s theorem.) But the

Gödel formula is true by the standards of informal number theory.

Simililarly, in the language of a physical theory describing observations,

there will be paradoxically self-referential propositions, or rather paradoxi-

cally self-referential states. Since the reference is from apparatus states to

states of the observed system, self-reference can and will occur if the appa-

ratus is contained in the observed system. The result that it is impossible

for an apparatus in the observed system to discriminate all states of the ob-

served system somewhat resembles Gödel’s theorem. Also the fact that an

apparatus outside the observed systems in general can distinguish all states

seems to be analogous to the fact that the Gödel formula is true in informal

number theory.

In spite of these similarities, there are important differences between

Gödel’s proof and my result. In fact, the most important parts of Gödel’s

proof do not have a parallel in my argument. Firstly, the formal system used

by Gödel is not semantically closed in the strict sense. In my argument there

is nothing similar to Gödel’s ingenious idea to do without semantic closure by

introducing the Gödel numbers. Secondly, Gödel proved his result without

assuming that provable statements are true. This considerably strengthens

his result, because it does not rely on the controversial concept of ‘truth
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in informal number theory’. (Guido Bacciagaluppi pointed out to me that

assuming provable statements to be true in informal number theory would

have discredited Gödel’s result in the eyes of the intuitionists. But both

formalists and intuistionists accepted the informal concept of truth in finite,

or constructive, number theory. Gödel relied only on this concept of truth.)

ω-consistency was all that Gödel needed, and in modern proofs it can in fact

be replaced by the weaker requirement of consistency. It is probably not

exaggerated to say that my argument does not have much more in common

with Gödel’s proof than the use of self-reference.

IV

Description of measurements. Let us assume that we have a physical theory

whose formalism specifies for the systems it describes sets of possible states.

These states may refer to individual systems or to statistical ensembles. In an

individual formulation of classical mechanics, for example, the states would

correspond to the points on phase space, whereas in an statistical formula-

tion they would be probability distributions, i.e. normalised L1-functions on

phase space. In quantum mechanics the individual states would be pure, i.e.

extremal, normalised, positive, linear functionals on the observables, whereas

the statistical states would be σ-weakly continuous and therefore correspond

to the normal, positive, normalised, linear functionals on the observables.

A measurement performed by an apparatus A on some observed system

O is an interaction establishing certain relations between the states of A

and of O. After a measurement, we infer information about the state of the

observed system from information we have about the state of the apparatus.

I will take it that the states of A and of O refer to the same time after the

experiment. To describe this inference, let us use a map θ from the power set

P(SA) of the set SA of apparatus states into the power set P(SO) of the set

SO of system states. θ assigns to every set SA of apparatus states (except the

empty set) the set θ(SA) of object states compatible with the information
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that the apparatus after the experiment is in one of the states in SA. This

defines the inference map θ which depends on the kind of measurement we

are making. θ is different in different measurement situations. But when the

observer chooses the experimental set-up, he also chooses a map θ describing

how he is going to interpret the pointer reading after the experiment. This

map is fixed throughout the measurement. The states in θ(SA) are the

possible states of O after the experiment; usually not every state of O is a

possible state after the experiment. We have θ(SA) ⊂ SO.

Knowing that if the apparatus after the experiment is in a state sA the

observed system must be in a state in θ({sA}), one infers from the information

that the apparatus after the experiment is in one of the states in SA that

the state of the observed system must be in
⋃

sA∈SA
θ({sA}). So θ(SA) =

⋃
sA∈SA

θ({sA}).
I will say that in an experiment with inference map θ a state so ∈ SO is

exactly measurable if after the measurement there exists a set SA ∈ P(SA)

of apparatus states referring uniquely to the state so, i.e. θ(SA) = {so}. An

experiment with inference map θ is said to be able to distinguish the states

s1, s2 if there is one set S1
A of final apparatus states referring to s1, but not

to s2, and another set S2
A referring to s2 but not to s1: θ(S

1
A) � s1 /∈ θ(S2

A)

and θ(S1
A) �� s2 ∈ θ(S2

A).

If a state so is exactly measurable, we can say that if the apparatus is in

one of the states in SA, then the measured system is with certainty in the

state so. (In general SA will consist of several apparatus states, because we

usually do not make the inference from the exact state of the apparatus, but

rather just from the pointer value.) If a state is exactly measurable, it can be

distinguished from any other possible final state, i.e. from any other state in

θ(SA). But for two states to be distinguishable it is not necessary that either

of them is exactly measurable. If all possible final states are distinguishable

from each other, then they are all exactly measurable.

The concepts of exact measurability and distinguishability are strong.

The results to follow—namely the impossibility of distinguishing from inside
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all states—do not deny the possibility of internal observers knowing some-

thing about their own states.

Let me say something about distinguishability of states for external ob-

servers in classical and quantum theory. In classical mechanics all individual

states (i.e. points in phase space) at least in principle can be distinguished by

a joint measurement of position and momentum. There is no lower bound to

the accuracy of such a measurement. Also, statistical states (i.e. probability

distributions on phase space) can be distinguished in statistical experiments.

Note, however, that individual states even in principle cannot be measured

exactly in a statistical experiment.1 But I do not think that this is a prob-

lem. After all it is only due to the fact that in a statistical description of

experiments one uses a concept of state which describes individual systems.

In quantum mechanics the situation is different. No measurement of

the first kind can distinguish all states of an individual system: the only

pure states which are a possible measurement outcome are the eigenstates of

the measured observable. If a pure state is either not an eigenstate of the

measured observable or is an eigenstate belonging to a degenerate eigenspace,

it is not exactly measurable. On the statistical level everything is alright

again: there are statistical experiments which can distinguish all statistical

states: for spinless particles this can be done for example in unsharp joint

measurements of position and momentum (see Busch 1982, Mittelstaedt et

1The reason for this (see Primas (1979)) is the following. In a statistical experiments
we measure probability distributions which are σ-additive. Defining—in a somewhat oper-
ationalist spirit—statistical states to be what you can measure in statistical experiments,
one takes the statistical states to be those which induce probability distributions. For
states on von Neumann algebras this is equivalent to both, σ-weak-continuity or normal-
ity. Taking L∞(Ω) as the algebra of observables of the classical system with phase space
Ω, the statistical states of a classical system correspond to the normalised elements of
the predual L1(Ω). They are probability measures on the phase space. Since there is no
normalised L1-function on Ω whose support is just one point, no individual state is a sta-
tistical state and vice versa. Therefore no statistical experiment can a unique individual
state.
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al. 1987.). These are informationally complete2 and therefore can distinguish

all statistical states.

Traditionally it has been considered a peculiarity of quantum mechanics

that no single experiment can distinguish all pure states. But the argument

I am going to present shows that the same occurrs for any measurement

where the observer is properly included in the observed system. This is true

for classical theories as well as for quantum theories, and irrespective of the

character of the time evolution. So many quantum mechanical lessons about

the rôle of the observer are perhaps not so specific for quantum mechanics.

Rather they seem to reflect a more general problem.

V

Measurements from inside. Now let us return to the argument. To bring self-

reference into the game consider the case where the apparatus is measuring

a system in which it is contained. So the observed system O is composed of

the apparatus A and of a rest R. We assume that the observed system has

more degrees of freedom than the apparatus and contains it. This can be

formulated in an assumption of proper inclusion:

(∃s, s′ ∈ SO) : s|A = s′|A, s �= s′.

Here s|A denotes the state of A which is determined by restricting the state

s of O to the subsystem A. So |A describes a surjective map from the states

of O to the states of A. (Later on I will, by slight abuse of notation, also

denote by |A the map from P(SO) into P(SA) defined by So|A := {s|A : s ∈
So}.) In classical mechanics, for example, a map |A is defined by discarding

2 A positive-operator-valued measure a on the value space Rn is called informationally
complete if tr(a(∆)ρ1) = tr(a(∆)ρ2) for all Borel subsets ∆ of Rn is only possible if the
density matrices ρ1, ρ2 are equal. The positive-operator-valued measures on Rn describe
generalised observables with values in Rn. Observables in the traditional sense are self-
adjoint operators on the Hilbert space and induce via their spectral resolution a projection-
valued measure on R. Such an observable can never be informationally complete.
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coordinates which refer to degrees of freedom of O which are not in A. In

quantum mechanics, one can take |A to be for example the partial trace over

R. For our purposes it is enough to take an arbitrary but fixed map.

Whether the assumption of proper inclusion is satisfied or not depends

not only on the sets SA,SO but also on the restriction map |A. One can give

examples of sets SA,SO and two restriction maps such that the assumption

of proper inclusion is satisfied with respect to one but not the other. (Take

for example as SO the natural numbers and as SA the even natural numbers.

If one takes as restriction map SO → SA : n �→ 2n, then the assumption of

proper inclusion is not satisfied. If the restriction map associates to every

n ∈ SO two times the biggest natural number less or equal to n/2, then

the assumption of proper inclusion is satisfied.) This may seem odd by it

is not. After all, the elements of SA and SO are states of different systems.

Therefore, even if SA is some subset of SO, we cannot infer automatically

that A is a subsystem of O; an arbitrary subset of SO can in general not

be interpreted to be the set of states of a subsystem of O. The restriction

map |A gives physical information which is not reflected in the structure of

the sets SA or SO, namely the fact that A is a subsystem of O. That A is

a subsystem of O does not only depend on the abstract structure of A (and

of O), but on which system A is. If A and A′ are isomorphic and A is a

subsystem of O, it does not follow that A′ is a subsystem of O.

The assumption of proper inclusion seems trivial in the sense that the

bigger system O needs more parameters to fix its state. But it excludes

situations in which each physically possible state of the whole system is

uniquely determined by a state of a subsystem together with some constraint.

(I take constraint to mean that states violating the constraint are physically

impossible in the sense that the system can never be in such a state.)

Let me briefly say something about the connection of my results to the

self-measurements of Albert (1983, 1987). The quantum mechanical au-

tomata described by Albert measure also something about themselves, but

they do not attempt to determine their own state exactly. In Albert’s de-
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scription the apparatus A is composed of several subsystem A1, A2, A3, . . ..

Measurement results of non-commuting observables A,B of a system S are

displayed by pointer observables PA of A1 and PB of A2. Since [PA ⊗
1A2 ,1A1 ⊗ PB] = 0 but [A,B] �= 0, measurement results for A and B can

be displayed simultaneously but they cannot both be accurate. In Albert’s

kind of self-measurement an observable B(1) of the system A1 ∪ S is mea-

sured by the subsystem A3 of the apparatus with the pointer observable

PB(1) . The crucial point is now that even if [1A1 ⊗ A,B(1)] �= 0, the appa-

ratus A1 ∪ A3 can measure them both simultaneously with full accuracy if

[B(1),1A1 ⊗A] = [B(1), PA ⊗ 1S]. This peculiarity is due to the fact that the

measurement of the observable B(1) involves a measurement on the system

A1. Since the apparatus A1 ∪A3 makes this measurement, it is surely a self-

measurement in the sense that the the apparatusA1∪A3 is partially contained

in the observed system A1 + S. But it is not fully contained in the observed

system. Therefore Albert’s measurements are not self-measurements in the

stronger sense that the assumption of proper inclusion is fulfilled. Albert’s

conclusions are therefore not related to the results of this chapter.

For exact measurability of all states it is necessary (but not sufficient)

that there is a surjective map from the states of A onto the states of O. But

if additionally A is a properly included in O, there are strictly more states of

O than states of A. If O has only finitely many possible states, this already

exludes the possibility of exact measurement of all states from inside the

observed system.

If we deal with systems with infinitely many possible states, it would be

natural to require continuity of the mapping: if two states of A are close

then the corresponding states of O should also be close to each other. This

additional requirement in classical mechanics implies that the phase spaces

of A and O must have the same dimension, because there could not be a

continuous bijection between the phase spaces if they were of different, finite

dimension. But the phase spaces of A and O cannot have the same dimension

if A is properly included in O. So under the assumption of continuity exact
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measurability of all states from inside in classical mechanics is at most feasible

if the phase space SO is infinite dimensional. Since this case is difficult to

handle I will drop the assumption of continuity altogether. Instead I take an

entirely different approach.

VI

A consistency condition and the main results. The states of the apparatus

after the measurement are self-referential: they are states in their own right,

but they also refer to states of the observed system in which they are con-

tained. This leads to a meshing condition for the inference map θ which must

be satisfied lest the inference map is contradictory:

For every apparatus state sA ∈ SA, the restriction of the system

states θ({sA}) to which it refers should again be the same appa-

ratus state sA. So meshing can be written: ∀sA ∈ SA : {s|A : s ∈
θ({sA})} = {sA}.

(By a slight abuse of notation I will write θ({sA})|A instead of {s|A : s ∈
θ({sA})}.)

From the physical point of view the meshing condition is not a restrictive

requirement. Rather it is motivated by logics: it just guarantees that we can-

not arrive at contradictory conclusions about the apparatus state. Assume

that the meshing condition is violated and that therefore there is a state

s′ ∈ θ({sA}) such that s′|A �= sA. Then knowing that after the experiment

the apparatus is in the state sA, we would conclude that O is in one of the

states in θ({sA}), possibly in s′. From this in turn we conclude that A can

be in the state s′|A, which contradicts the assumption that A is in the state

sA. Note that the meshing condition has to be imposed because both sA

and θ({sA})|A describe the state of A at one given time. This reflects the

fact that self-reference problems only occur if an observer wants to know his

present state.
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With the meshing condition at hand we can now establish that not all

states of a system can be measured exactly by an internal observer. The

intuitive reason for this is that the meshing condition and the assumption of

proper inclusion prevent the existence of a bijection from SA to SO.3

Proposition 1: The assumption of proper inclusion and the meshing con-

dition imply that not all states of a system can be measured exactly by an

internal observer. ∃so ∈ SO,∀SA ∈ P(SA) : θ(SA) �= {so}.

Proof: To prove this indirectly, suppose now that the observer can measure

all states of O exactly: (∀s ∈ SO)(∃SA ∈ P(SA)) : θ(SA) = {s}. This

assumption together with the meshing condition will lead to a contradiction.

From the assumption of proper inclusion it follows that (∃s, s′ ∈ SO) :

s|A = s′|A, s �= s′. By assumption there are SA, S
′
A ∈ P(SA) such that

θ(SA) = {s}, θ(S ′
A) = {s′}. Since

⋃
sA∈SA

θ({sA}) = θ(SA) = {s} there is

a sA ∈ SA such that θ({sA}) = {s}. Similarily, there is a s′A ∈ S ′
A such

that θ({s′A}) = {s′}. Repeated application of the meshing condition yields

{s} = θ({sA}) = θ({θ({sA})|A}) = θ({s|A}) = θ({s′|A}) = θ({θ({s′A})|A}) =

θ({s′A}) = {s′}, contradicting s �= s′. QED.

Lemma: The meshing condition implies that

(∀sA) : θ({sA}) = {s ∈ SO : s ∈ θ(SA), s|A = sA}.
3There could, of course, be bijections not fulfilling the meshing condition. For example,

if SA is infinite but countable, and if for every state sA ∈ SA there are only finitely many
s ∈ SO such that s|A = sA, then there is a bijection φ between SA and SO. But since
∃sA ∈ SA : φ({sA})|A �= {sA} the meshing condition is not fulfilled. Therefore φ describes
a contradictory inference.

There could also be bijections between SA and SO fulfilling the meshing condition but
violating the assumption of proper inclusion. Take for example as SO the natural numbers
and as SA the even natural numbers. If one takes as restriction map SO → SA : n �→ 2n,
and as inference map θ : P(SA) → P(SO), {2n} �→ {n}, then the meshing condition
is satisfied because θ({2n})|A = {2n}. But the assumption of proper inclusion is not
satisfied. This is natural because SA ⊂ SO does not imply that A is a subsystem of O.
See the discussion after the assumption of proper inclusion was introduced.
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Proof: Let s ∈ θ({sA}), then the meshing condition implies s|A ∈
θ({sA})|A = {sA}. So s|A = sA and θ({sA}) ⊂ {s ∈ SO : s ∈ θ(SA), s|A =

sA}. Conversely, let s ∈ SO be such that s|A = sA for some sA and s ∈
θ(SA).Then there is a s′A ∈ SA such that s ∈ θ({s′A}). Then again from the

meshing condition we conclude that s|A = s′A. So sA = s′A and s ∈ θ({sA}).
QED.

Proposition 2: Let s1, s2 be two states of O fulfilling s1|A = s2|A. Then

there is no inference map θ, and thus no measurement using as apparatus A,

which can distinguish s1 and s2:

(∀θ) :
(
(� ∃S1

A, S
2
A ∈ P(SA)) : θ(S1

A) � s1 /∈ θ(S2
A), θ(S1

A) �� s2 ∈ θ(S2
A)

)
.

Proof: Assume that there exists an inference map θ, and sets S1
A, S

2
A of

apparatus states such that θ(S1
A) � s1 /∈ θ(S2

A), θ(S1
A) �� s2 ∈ θ(S2

A). This will

lead to a contradiction.

From s1 ∈ θ(S1
A) =

⋃
s∈S1

A
θ({s}) �� s2 we conclude that there is a s1

A ∈ S1
A

such that s1 ∈ θ({s1
A}) and that s2 /∈ θ({sA}) for all sA ∈ S1

A. s2 ∈ θ(S2
A)

implies that s2 ∈ θ(SA). Using the Lemma we conclude from s1 ∈ θ({s1
A})

that s1|A = s1
A. Since s2 ∈ θ(SA) and s2|A = s1|A = s1

A we conclude from the

Lemma also that s2 ∈ θ({s1
A}). This is in contradiction with the fact that

s2 /∈ θ({sA}) for all sA ∈ S1
A. QED.

The result of Proposition 1 can be reformulated in a way reflecting the

analogy with Gödel’s result.

Corollary: Under the assumption of proper inclusion, if all states are exactly

measurable from inside the system then the inference map θ is contradictory

(i.e. the meshing condition is violated). (∀s ∈ SO)(∃sA ∈ SA) : θ({sA}) =

{s} implies (∃so ∈ SO) : θ({so|A})|A �= {so|A}.

Proof: From the assumption of proper inclusion we know that there are

s, s′ ∈ SO such that s �= s′, s|A = s′|A. By the antecedent, there are states

sA, s
′
A ∈ SA such that θ({sA}) = {s} and θ({s′A}) = {s′}. Assume that θ
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satisfies the meshing condition for s′A: θ({s′A})|A = {s′A}. Then {s′|A} =

θ({s′A})|A = {s′A}. So s′A = s′|A and θ({s′|A}) = {s′}. This leads to {s} �=
{s′} = θ({s′|A}) = θ({s|A}). Therefore, if the meshing condition is satisfied

for s′|A, then it is not satisfied for s|A. QED.

The state so|A plays a rôle analogous to the Gödel-formula. Since θ({so|A})|A �=
{so|A}, this state is self-referential in a paradoxical way. A second analogy

becomes apparent when we reformulate the main result in still another way.

Recall that an observable is called informationally complete if by measuring

it one can distinguish all the states (for a precise definition see footnote 2.)

Now the main result can be formulated in a way reminiscent of Gödel’s in-

completeness theorem: No measurement from inside the observed system can

be informationally complete. In spite of the intuitive similarities with Gödel’s

theorem we should not forget the fundamental differences between the two

situations.

4 Measurement of EPR-correlations

The main results presented until now are true for classical and for quantum

mechanics, and irrespective of the character of the time evolution. Stronger

results hold when we take into account particular features of the quantum

mechanical situation. This is what I will deal with now.

VII

EPR-correlations and their measurability from inside. Consider again an

observed system O containing the apparatus A and some environment or

residue R, O = A∪R. Assume that all these systems are correctly described

by quantum mechancis. If the systems A and R have Hilbert spaces HA

and HR as state spaces, then the EPR-correlations in the vector state ψ ∈
HA⊗HR can be obtained for example from the coefficients of ψ in Schmidt’s
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(1908) biorthonormal decomposition. ψ can be expanded as ψ =
∑
λnαn ⊗

βn, where {αn} and {βn} are sets of orthonormal vectors in HA and HR

respectively. The EPR-correlations vanish if and only if ψ is a product state,

i.e. if all coefficients λn except one vanish. The phases φn of the coefficients

λn = |λn|eiφn describe the EPR-correlations: if the coefficients λ1
n, λ

2
n of two

different states ψ1, ψ2 of the joint system differ only in their phases φ1
n, φ

2
n,

then their restrictions to any one of the two subsystems obtained by partial

tracing are the same (mixed) states:

ψ1|A =
∑
n

|λ1
n|2|αn〉〈αn| =

∑
n

|λ2
n|2|αn〉〈αn| = ψ2|A,

and similarily for ψ1|R, ψ2|R.

Generalising this property of EPR-correlations in pure states of a com-

posite system, we will say that two arbitrary states differ only in the EPR-

correlations between the subsystems if and only if the states are different but

the restrictions by partial trace of both states to any of the subsystems coin-

cide. The correlations have been named after Einstein, Podolsky, and Rosen,

because in the version of their (1935) argument presented by Bohm (1951,

sections 15-19, chapter 22), the antisymmetric spin state of two electrons

with total spin zero has this property.

After a first kind quantum measurement of an apparatus A on an external

observed system R, the assumption of proper inclusion is fulfilled: A is prop-

erly included in the composite system A ∪ R. Agreed, such a measurement

establishes strict correlations between a certain quantity of A (the pointer

value) and the measured quantity, so that after the experiment some states

of A may determine uniquely some states of R and also of A ∪ R. Still, the

states of A do not determine uniquely all possible states of R: states of the

composite system in which the strict correlations do not obtain are physi-

cally possible. (Usually before the measurement the joint system is in such

a state.) These states guarantee that the assumption of proper inclusion is

satisfied.
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But what is more, due to the existence of EPR-correlations, the assump-

tion of proper inclusion is satisfied in a more radical way than in classical

mechanics. In classical mechanics, the restrictions to A and R of a pure

states of O determine this state uniquely. In quantum mechanics, there are

uncountably many pure states of O whose restrictions to A and R coincide.

Now consider two arbitrary states s1, s2 of the joint system A ∪R which

differ only in the EPR-correlations between A and R. I will argue that for the

apparatus A it is impossible to distinguish the states s1, s2. (In the context

of quantum field theories a similar result was shown by Komar (1964).)

EPR-correlations cannot be measured in experiments just on the external

system R. Such experiments can at most determine the reduced density

matrix of R. This density matrix does not encode any information about the

EPR-correlations between A and R. Therefore correlation experiments have

to be measurements on the joint system A∪R. Since we require that A should

make these measurements, the measuring apparatus is properly contained in

the observed system. We are thus in a position to apply Proposition 2. It

implies that for the apparatus A there is no inference map θ, und thus no

measurement, such that there is one set S1
A of final apparatus states referring,

possibly not uniquely, to s1, but not to s2, and another set S2
A referring to s2

but not to s1. We therefore conclude that A is unable to distinguish s1 and

s2.

Hence A cannot distinguish states of O which differ only in the EPR-

correlations between A and R. But of course an observer only partially or

not at all contained in A ∪ R could measure the EPR-correlations between

A and R.
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5 Universal validity revisited

VIII

Now let us return to the question of how we should conceive of universally

valid theories. If a theory is universally valid in the absolute sense, it does not

allow for an observer not described by the theory. Take Ou to be the biggest

system described by an absolutely universally valid theory. Ou might be

called the “world”, or the “universe”. As all potential observers are described

by the theory, Ou does not have any outside observer. (In the terminology

of Roessler (1987), Finkelstein (1988), and Primas (1990) a system without

external observer is called endophysical.) If, and this is a slightly stronger as-

sumption, the union of all observers fulfils the assumption of proper inclusion,

then, according to Proposition 1, there are some states of Ou which cannot be

measured exactly by any observer, not even by all of them together. (It does

not help to try and share out the work of measuring the state of Ou between

several observers. For if the union of observers still obeys the assumptions

of proper inclusion and the meshing condition, then the Proposition holds.)

So no experiment can distinguish all states of Ou. Is it acceptable that an

absolutely universally valid theory describes systems for which there are no

experiments, which at least in principle can distinguish all states? How you

answer this question depends on your philosophical proclivities.

A physical realist would rather not dismiss a theory just because it does

not make sufficient reference to test procedures. In his opinion, there are

entities which in some sense are independent of human knowledge. State-

ments about these entities should not be conflated with statements about

the knowlegde of the entities. From this point of view, the fact that no

experiment, not even in principle, can distinguish all states is not in itself

objectionable. Accordingly, a physical realist would not take the above argu-

ment as sufficient reason to exclude the possibility of absolutely universally

valid theories.
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An extreme operationalist would say that a physical theory is meaning-

less unless it is linked to procedures for obtaining knowledge. So he might

insist to use the term “state” in a way which guarantees that there is some

experiment which at least in principle can distinguish all states, even if tech-

nical problems make this difficult in practice. Consequently, the extreme

operationalist would think that a theory should be operational in the sense

that there is some experiment able to distinguish all states. But, as we have

seen above, absolutely universaly valid theories do not have this property.

From this point of view the possibility of absolutely universally valid theo-

ries, deterministic or not, would have to be rejected.

The operationalist, being forced to deny the possibility of absolutely uni-

versally valid theories, has to find a different, weaker concept of universal

validity. The first thing to realise is that for an external observer, or one who

is at least partially external, the assumption of proper inclusion is violated,

and thus Proposition 1 does not apply. So an external observer, or an at least

partially external one, may be able to distinguish all states of the observed

system. Let us take O to be the biggest system described by the operational-

ist’s theory. Since the operationalist requires that some experiment must be

at least conceivable which can distinguish all states of O, he has to admit

observers partially outside O. In what sense can a theory having an observer

outside the biggest system it can describe be universally valid?

Interpreting “describe” in the ontic sense of “is true of”, a theory having

an observer outside the biggest system it can describe is not universally valid

at all. But an operationalist would prefer to interpret “describe” in the

epistemic sense of “can be applied by an observer so as to lead to asserted

sentences”. What a theory can describe therefore depends on the observer

applying the theory. The above results imply that no observer can apply

the theory to the whole world: if he applies it to a system he is properly

contained in, then with no experiment can he distinguish all states of the

system. For each observer, the biggest system to which he can apply the

theory does not contain himself. Still, the theory might be universally valid
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in the sense that for every part of the world some observer can apply the

theory to it. Since—for an operationalist—the range of applicability of a

theory depends on the observer, I call such a theory universally valid in the

relative sense.

Nowhere in these considerations did the assumption enter that we are

dealing with a quantum mechanical system; the whole argument holds true

for classical mechanics as well. As long as one adopts a strictly operational-

ist position, one can conclude by the above argument that even classical

mechanics can be universally valid at most in the relative sense.

IX

The universal validity of quantum mechanics. It has often been claimed

that traditional quantum mechanics cannot describe the observer and that

therefore it is universally valid at most in the relative sense. This conclusion

was briefly discussed in section 2 in connection with the argument of Peres

and Zurek.

Applied to quantum mechanics, my arguments lead to two novel aspects:

Firstly, the conclusion of relative universal validity does not depend on the

deterministic or on the linear character of the Schröpdinger time evolution.

At least if one adopts an operationalist point of view, one can explain by self-

reference problems alone why quantum mechancs can be universally valid at

most in the relative sense.

Secondly, for quantum mechanics one arrives at stronger conclusions. Up

to now, I discussed implications of self-reference problems for the universal

validity of general physical theories. The starting point of the argument was

that, if the union of all potential observers is properly included in the universe

Ou, no experiment can distinguish all states of Ou. This was a consequence

of Proposition 1. In quantum mechanics we have the particular situation

that there exist many states of Ou which differ only by the EPR-correlations

between the subsystems of Ou. Therefore, there are many different states
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which differ only by the EPR-correlations between all potential observers.

The restriction of all these states to the observers coincide. Then it follows

from Proposition 2 that given two such states, there is no experiment able

to distinguish between them. This is stronger than the conclusion that no

observer can distinguish all states.

An operationalist might try maintain absolute universal validity of a clas-

sical theory by renouncing the requirement that there be an experiment able

to distinguish all states. Instead he could just require that for any two differ-

ent states of his theory there is some experiment able to distinguish between

them. This option is not open in quantum mechanics: there are states of Ou

which cannot be distinguished by any experiment. Therefore even this more

modest operationalist would have to admit that quantum mechanics can be

universally valid at most in the relative sense.
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