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Abstract—The Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) is a popular method to deal with nonconvex and/or
stochastic optimization problems when gradient information is
not available. Being based on the CMA-ES, the recently proposed
Matrix Adaptation Evolution Strategy (MA-ES) establishes the
rather surprising result that the covariance matrix and all asso-
ciated operations (e.g., potentially unstable eigen decomposition)
can be replaced by an iteratively updated transformation matrix
without any loss of performance. In order to further simplify MA-
ES and reduce its O

�
n2� time and storage complexity to O

�
mn

�
with m � n such as m 2 O

�
1
�

or m 2 O
�
log(n)

�
, we present

the Limited-Memory Matrix Adaptation Evolution Strategy (LM-
MA-ES) for efficient zeroth order large-scale optimization. The
algorithm demonstrates state-of-the-art performance on a set of
established large-scale benchmarks.

I. INTRODUCTION

Evolution Strategies (ESs) are optimization methods origi-
nally inspired by mutation of organic beings and designed to
establish “a reward-based system, to increase the probability
of those changes, which lead to improvements of quality of
the system” [1]. Going far beyond their biologically inspired
roots, they have been developed into state-of-the-art zeroth
order search methods [2]. Evolution strategies [3] consider an
objective function f : IRn 7! IR; x 7! f (x) to be minimized by
sampling i 2 f1; : : : ; �g candidate solutions at iteration t as

x (t)
i  y (t) + �(t) � N

�
0;C(t)

�
; (1)

where y (t) is the current estimate of the optimum, C(t) 2 IRn�n

is a covariance matrix initialized to the identity matrix C(0) = I,
�(t) is a scaling factor for the mutation step, often referred
to as the global step size, and N denotes a random vector
following the standard normal distribution. Both y (t) and
�(t) are to be adapted or learned over time. Modern ESs
such as the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) also include the adaptation of C(t) [4], [5] to
the shape of the local landscape, resembling second order
methods. Recent theoretical studies of ES and CMA-ES
from the perspective of information geometry [6], [7], [8],
[9], connecting the method to stochastic natural gradient
learning, have made significant progress in understanding the

principles underpinning the state-of-the-art performance of the
algorithm [10]. The variety of algorithms [2] derived from
and inspired by the theoretical studies helped to notice that
the core component of CMA-ES, the covariance matrix itself
(and covariance matrix square root operations) can be removed
from the algorithm without any loss of performance [11].1 The
final algorithm called Matrix Adaptation Evolution Strategy
(MA-ES [11]) is conceptually simpler and involves only matrix-
matrix and matrix-vector operations, which, however, lead
to �

�
n3= log(n)

�
time complexity per sample, which can be

reduced to �
�
n2� (see below), and �(n2) space complexity.

A very simple evolution strategy style algorithm has recently
been applied to the problem of optimizing deep neural network
controllers for Atari games [12] in a highly parallel fashion.
However, neither the step size nor the covariance matrix
were adapted, resulting in extremely poor convergence speed.
Because of the high dimensionality of weight spaces of deep
neural networks, which can have many thousands and even
millions of parameters, CMA-ES and MA-ES are not applicable
to the problem. With the steadily increasing dimensionality of
real-world optimization problems, the new challenges of large-
scale black-box optimization become more pronounced for
CMA-ES and MA-ES due to their �(n2) complexity. To address
them, a number of large-scale CMA-ES variants has been
proposed [13], [14], [15], [16], [17], [18] including the Limited-
Memory CMA-ES (LM-CMA-ES [17]) that matches the
performance of quasi-Newton methods such as L-BFGS [19]
when dealing with large-scale black-box problems. It has a
moderate sample cost of O

�
mn

�
time and space complexity,

where m � n can in principle be as small as 1. Alternative large-
scale optimization approaches from the domain of evolutionary
computation are based on cooperative coevolution, evolving
blocks of coordinates in parallel [20]. This (implicitly) assumes
some degree of separability of the problem.

In this work, we combine the best of two worlds: inspired
by LM-CMA-ES we present the Limited-Memory Matrix
Adaptation Evolution Strategy (LM-MA-ES), which matches

1Of course, the transformation matrix needed for sampling the multivariate
Gaussian is kept, enabling variable metric optimization.
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state-of-the-art results while reducing the time and space
complexity of MA-ES to O

�
mn

�
per sample. A key novelty

of the algorithm is the introduction of a flexibly sized set of
evolution paths, which operate on different time scales.

II. VARIABLE METRIC ESS: CMA-ES AND MA-ES

Our discussion of variable metric ESs is based on Algorithm
1, which highlights the similarities and differences between
CMA-ES, MA-ES, and the proposed LM-MA-ES.

The sampling of the � candidate solutions in CMA-ES
is described by eq. (1) and involves a matrix-vector product
between a matrix

p
C and a vector zi sampled from the n-

dimensional standard normal distribution. This operation (see
line 7 in Algorithm 1) requires

p
C to be stored (hence, the

�(n2) storage cost) and the matrix-vector multiplication to be
performed (hence, the �(n2) time cost). The resulting vector
di represents a direction of the so-called mutation operation.
The i-th candidate solution is obtained by changing (mutating)
the current estimate of the optimum y by di multiplied by the
global mutation step-size � (line 11). The rationale behind
parameterizing the sampling distribution byN

�
y; �2C

�
and not

just N (y;C), i.e., decoupling C and �, lies in the observation
that � can be learned more quickly and more robustly than C
and its adaptation alone enables linear convergence on scale-
invariant problems [21].

ESs are invariant to rank-preserving / strictly monotonically
increasing transformations of f -values because all operations
are based on ranks of evaluated solutions. The estimate of the
optimum y is updated by a weighted sum of mutation steps
taken by the top ranked � out of � solutions (line 12).

The currently most commonly applied adaptation rule for
the step size is the cumulative step-size adaptation (CSA)
mechanism [22]. It is based on the length of an evolution path
p� , an exponentially fading record of recent most successful
steps zi:� (see line 13). If the path becomes too long (the
expected path length of a Gaussian random walk can be
approximated by

p
n when n is large), indicating that recent

steps tend to move into the same direction, then the step
size is increased. On the contrary, a too short path indicating
oscillations due to overjumping the optimum results in a
reduction of the step size. A rigorous analysis of CSA with
and without cumulation on the ellipsoid function is given in
[23].

The seminal CMA-ES algorithm [4], [5] introduced adap-
tation of the covariance matrix, which renders the algorithm
invariant to affine transformations of the search space (achieved
in practice after an initial adaptation phase) and hence enables
a fast convergence rate independent of the conditioning of the
problem, resembling second order methods. The covariance
matrix is adapted towards a weighted maximum likelihood
estimate of the � most successful samples (rank-� update)
with learning rate c� and a second evolution path (rank-1
update) with learning rate c1 (see line 15). This update has an
alternative interpretation as a stochastic gradient step on the
information geometric manifold forming the algorithm’s state
space [7], [8]. While the default strategy parameter values of
CMA-ES given in Algorithm 1 are known to be robust, their

optimal values can be adapted online during the optimization
process, providing additional speed and robustness [24].

Most implementations of CMA-ES consider eigendecom-
position procedures of O(n3) time complexity per call to
obtain

p
C from C only every n=� iterations (see line 7) to

achieve amortized �(n2) time complexity per sampled solution.
Numerical stability of the �(n2) update can be ensured by
maintaining a triangular Cholesky factor [25].

The recently proposed Matrix Adaptation Evolution Strategy
(MA-ES) greatly simplifies CMA-ES by avoiding the con-
struction of the covariance matrix C. Instead it maintains only
a transformation matrix M representing

p
C, i.e., fulfilling

MMT = C. After removing the approximate redundancy of p�
and pc , M can be updated multiplicatively (line 16). Matrix
multiplication is an O(n3) operation, therefore we propose to
replace the multiplicative update at iteration t by the equivalent
additive update

M(t+1)  

�
1 �

c1
2
�

c�
2

�
M(t)

+
c1
2

d(t)
� (p(t)

� )T +
c�
2

�X
i=1

wi d
(t)
i:�(z (t)

i:�)T ; (2)

which achieves O(n2) time cost thanks to precomputing d(t)
� =

M(t) p(t)
� and reusing the vectors d(t)

i:�. The resulting algorithm
is referred to as fast MA-ES.

III. THE LIMITED-MEMORY MATRIX ADAPTATION
EVOLUTION STRATEGY

A number of methods were proposed to reduce the space and
time complexity per sample from O(n2) to O(n) or at least
O

�
n log(n)

�
while still modeling the most relevant aspects

of the full covariance matrix. Simple approaches like [14]
restrict the covariance matrix to its diagonal, while more
elaborate methods use a low-rank approximation [15], [17].
Both approaches can be combined [16]. Inspired by the Limited-
Memory CMA-ES [17], which in turn is inspired by the L-
BFGS method [26], we show how to scale up MA-ES to high-
dimensional problems. The derivation given below is based on
the multiplicative update. The final result for the additive update
(2) is equivalent when d(t)

� is not stored but reconstructed as
M(t) p(t)

� . At iteration t, the main update equation of MA-ES
reads

M(t+1)  M(t)
"
I +

c1
2

�
p(t+1)
� (p(t+1)

� )T � I
�

+
c�
2

*
,

�X
i=1

wi z
(t)
i:�(z (t)

i:�)T � I+
-

#
;

(line 16 in algorithm 1) where M(t) is adapted multiplicatively
based on the rank-one update weighted by c1

2 and the rank-�
update weighted by c�

2 , starting from M(t=0) = I. By omitting
the rank-� update for the sake of simplicity (i.e., by setting
c� = 0), we obtain

M(1)  I +
c1
2

�
p(1)
� (p(1)

� )T � I
�

=

�
1 �

c1
2

�
I +

c1
2

p(1)
� (p(1)

� )T

(3)
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Algorithm 1 CMA-ES , MA-ES and LM-MA-ES

1: given n 2 N+, � = 4 + b3 ln nc, � = b�=2c, wi =
ln(�+ 1

2 )�ln iP�
j=1 (ln(�+ 1

2 )�ln j)
for i = 1; : : : ; �, �w = 1P�

i=1 w2
i

,

c� =
�w +2

n+�w +5; cc = 4
n+4; c1 = 2

(n+1:3)2+�w
; c� = min

�
1 � c1;

2(�w�2+1=�w )
(n+2)2+�w

�
,

m = 4 + b3 ln nc; c� = 2�
n ; cd;i = 1

1:5i�1n
; cc;i = �

4i�1n
for i = 1; : : : ;m

2: initialize t  0; y (t=0) 2 IRn; �(t=0) > 0; p(t=0)
� = 0, p(t=0)

c = 0; C(t=0) = I , M(t=0) = I , m(t=0)
i 2 IRn ,

m(t=0)
i = 0 for i = 1; : : : ;m

3: repeat
4: for i  1; : : : ; � do
5: z (t)

i  N (0; I )
6: d(t)

i  z (t)
i

7: if t mod n
� = 0 then M(t)  

p
C(t) else M(t)  M(t�1) . CMA-ES

8: d(t)
i  M(t) d(t)

i . CMA-ES and MA-ES

9: for j  1; : : : ;min(t;m) do . LM-MA-ES

10: d(t)
i  (1 � cd; j )d(t)

i + cd; j m
(t)
j

�
(m(t)

j )T d(t)
i

�
. LM-MA-ES

11: f (t)
i  f (y (t) + �(t) d(t)

i )
12: y (t+1)  y (t) + �(t) P�

i=1 wi d
(t)
i:� . the symbol i : � denotes i-th best sample on f

13: p(t+1)
�  (1 � c� ) p(t)

� +
p
�wc� (2 � c� )

P�
i=1 wi z

(t)
i:�

14: p(t+1)
c  (1 � cc) p(t)

c +
p
�wcc (2 � cc)

P�
i=1 wi d

(t)
i:� . CMA-ES

15: C(t+1)  (1 � c1 � c�)C(t) + c1 pc (p(t)
c )T + c�

P�
i=1 wi d

(t)
i:�(d(t)

i:�)T . CMA-ES

16: M(t+1)  M(t)
f
I +

c1
2

�
p(t)
� (p(t)

� )T � I
�

+
c�
2

�P�
i=1 wi z

(t)
i:�(z (t)

i:�)T � I
�g

. MA-ES

17: for i  1; : : : ;m do . LM-MA-ES

18: m(t+1)
i  (1 � cc;i)m(t)

i +
p
�wcc;i (2 � cc;i)

P�
j=1 w j z

(t)
j:� . LM-MA-ES

19: �(t+1)  �(t) � exp
"

c�
2

 p (t+1)
�


2

n � 1
!#

20: t  t + 1
21: until stopping criterion is met

The sampling procedure of the i-th solution x (1)
i follows

x (1)
i  y (1) + �(1) d(1)

i = y (1) + �(1)M(1) z (1)
i ;

where z (1)
i � N (0; I ). One can rewrite d(1)

i = M(1) z (1)
i based

on equation (3) as

d(1)
i = M(1) z (1)

i =

��
1 �

c1
2

�
I +

c1
2

p(1)
� (p(1)

� )T
�

z (1)
i

= z (1)
i

�
1 �

c1
2

�
+

c1
2

p(1)
�

�
(p(1)
� )T z (1)

i

�
(4)

Importantly,
�
(p(1)
� )T z (1)

�
is a scalar (see line 10 in Algo-

rithm 1) and thus equation (4) does not require M(1) to be
stored in memory. One generally obtains

d(t)
i = M(t) z (t)

i = M(t�1)P(t) z (t)
i

= M(t�1)
��

1 �
c1
2

�
I +

c1
2

p(t)
� (p(t)

� )T
�

|                                {z                                }
:=P(t )

z (t)
i (5)

leading to a sequence of products

d(t)
i =

��
1 �

c1
2

�
I +

c1
2

p(1)
� (p(1)

� )T
�
� : : :

: : : �
��

1 �
c1
2

�
I +

c1
2

p(t�1)
� (p(t�1)

� )T
�

�

��
1 �

c1
2

�
I +

c1
2

p(t)
� (p(t)

� )T
�

z (t)
i (6)

which is to be treated from right to left. Thus, the sampling
procedure for d(t)

i = M(t) z (t)
i does neither require matrix-

matrix-product operations nor does it require the storage of
M(t) 2 IRn�n, but can be performed based on t vectors p(t)

�

used to construct M(t) . However, this is efficient only for
t � n. Therefore, in order to reduce the cost of the sampling
procedure, equation (6) must be approximated in one way or
another by artificially limiting the number m of supporting
p(t)
� vectors such that m � n.
LM-CMA-ES [17] addresses a similar problem of compactly

representing the covariance matrix with m � n direction
vectors: instead of considering the last m vectors, it samples
them in a certain temporal distance in terms of iterations t.
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Name Function f (x)
Sphere

Pn
i=1 x2

i

Ellipsoid
Pn

i=1 106 i�1
n�1 x2

i

Rosenbrock
Pn�1

i=1

�
100 � (x2

i � xi+1)2 + (xi � 1)2
�

Discus 106x2
1 +

Pn
i=2 x2

i

Cigar x2
1 + 106 Pn

i=2 x2
i

Different Powers
Pn

i=1 jxi j
2+4(i�1)=(n�1)

TABLE I
TEST FUNCTIONS USED IN THIS STUDY.

In principle, the same approach works also for LM-MA-
ES (see the supplementary material for details). However,
the rather complicated procedure of ensuring a temporal
distance between p� vectors can be simplified by considering
different time horizons of their update. This procedure is
a viable alternative since p� itself is anyway incrementally
updated with

P�
i=1 wi zi:�. Thus, instead of a full transformation

matrix M 2 IRn�n and similarly to LM-CMA-ES, LM-MA-ES
maintains m � n vectors mi (see lines 17-18 in Algorithm
1), modeling the deviation of the transformation matrix from
the identity as a rank-m matrix. The learning rates cc;i and
cd;i for applying and updating the vectors mi are chosen to
be exponentially decaying, hence the mi are fading records
of mean update steps on exponentially differing time scales.
This is in contrast to CMA-ES and MA-ES, which update their
matrices C and M only with two different learning rates for
the rank-1 and rank-� updates, and hence operate on a single
time scale. LM-MA-ES learns some directions very quickly,
while others are kept more stable. This can be advantageous in
particular in high dimensions where learning rates are generally
small due to the sub-linear sample size.

The setting of the hyperparameter m affects the final time
and memory complexity of LM-MA-ES. We suggest to set it to
something between m 2 O

�
1
�

and m 2 O
�
log(n)

�
, leading to

O
�
n
�

and O
�
n(log(n)

�
time and space complexity, respectively.

In this paper, we primarily focus on the latter case. Re-tuning
cd;i and dc;i might be beneficial to adjust the algorithm to
work best for a particular choice of m.

By construction, LM-MA-ES features all invariance prop-
erties of modern ESs, namely invariance to translation and
rotation of IRn, and strictly monotonic (rank-preserving)
transformations of objective values. That is, when applied
to transformed test functions, LM-MA-ES does not show
performance degradation. A formal proof and an experimental
validation of rotation invariance are found in the supplement.

IV. EXPERIMENTAL VALIDATION

With our experimental evaluation we aim to answer the
following questions:
� How does LM-MA-ES compare to MA-ES, i.e., what is

the effect of modeling only an m-dimensional subspace?
� How does LM-MA-ES compare to other algorithms

designed for high-dimensional black-box optimization?
To answer these questions, we investigate the performance

on large-scale variants (n 2 f128; 256; : : : ; 8192g) of standard

number of variables

se
co

nd
s 

pe
r s

am
pl

e

102 103 104
10-6

10-5

10-4

10-3

10-2

LM-MA-ES
fast MA-ES

Fig. 1. Internal algorithm cost.

benchmark problems [27] (see Table 1). Starting from the
initial region [�5; 5]n containing the optimum with initial step
size � = 3 we optimize until reaching the (rather exact) target
precision of f tar = 10�10. Similar sets of problems were used
in the CEC competition on large scale global optimization [28],
however, with a focus on (partial) separability. This is not a
concern because LM-MA-ES is invariant to rotations. We focus
on unimodal problems. It is straightforward (but outside the
scope of this paper) to add well-established wrapper techniques
like restarts [29] for improved global search behavior.

All strategy parameters of LM-MA-ES and MA-ES are given
in Algorithm 1. We use LM-CMA-ES [17], VD-CMA-ES
[16] and the active (�=�w; �)-CMA-ES [30], [31] (aCMA-ES,
known to be up to two times more efficient than the default
CMA-ES) as baselines. The source code of LM-MA-ES is
available in the supplementary material.

Figure 1 shows the effect of the O
�
n log(n)

�
scaling of

the runtime per sample as compared to O(n2) of fast-MA-
ES (in the following denoted as MA-ES), measured for
implementations of the algorithms in plain C.

The much better internal scaling is of value only if the
algorithm does not pay a too high price in terms of an increased
number of function evaluations required to reach f tar . Figure 2
shows that LM-MA-ES performs surprisingly well: in some
cases it even saves function evaluations, and this tends to
happen more often for larger n. LM-MA-ES is always faster
in terms of wall clock time, in some cases by a factor of 100.

Figure 3 shows that LM-MA-ES scales favorably compared
to LM-CMA-ES achieving better scaling on the Rosenbrock
and Discus functions, but a worse scaling on Cigar. The latter
result might be due to an improper setting of the strategy
parameters, a problem that can most probably be fixed with
the technique proposed in [24]. VD-CMA is not able to solve
some rotated functions efficiently due to the restrictions on the
covariance matrix that the algorithm assumes [16], [17].

V. CONCLUSION

The recently proposed Matrix Adaptation Evolution Strategy
is a simpler variant of the Covariance Matrix Adaptation
Evolution Strategy. We showed that the O(n2) time and space
complexity of MA-ES, which is prohibitive for large n, can
be reduced to O

�
mn

�
with m � n adopting the approach used

in [17]. The proposed Limited-Memory Matrix Adaptation Evo-
lution Strategy matches state-of-the-art results on large-scale
optimization problems while being algorithmically simpler than
LM-CMA-ES.

Future work should investigate to which extent the inclusion
of the rank-� update can improve the performance. The learning
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Fig. 2. Runtime in number of function evaluations (rows 1–2) and seconds (rows 3–4) of LM-MA-ES in 128 to 8192 dimensions and fast MA-ES in 128 to
1024 dimensions on six standard benchmark problems.

rates of LM-MA-ES can be optimized online as it is commonly
done in self-adaptive evolutionary algorithms [32] or based on
the maximum-likelihood principle [24].

The empirical evaluation presented in this paper is limited to
state-of-the-art Evolution Strategies, and our future work should
consider a wider range of algorithms. Moreover, the currently
used testbed is limited to relatively simple functions whose
difficulty arises from the dimensionality considered here. In
our previous work [17] we demonstrated that the performance
of LM-CMA-ES on such functions can match L-BFGS and
outperform the latter on a nonsmooth Nesterov function. It
would be interesting to further analyze advantages of derivative-
free algorithms over L-BFGS on nonsmooth functions.

A promising venue for LM-MA-ES would be applications to
training of deep neural networks. It may accelerate Stochastic
Gradient Descent (SGD) for training deep neural networks
by replacing the evolution path vectors by momentum vectors
based on noisy batch gradients. The method could potentially
represent an alternative to L-BFGS and numerous SGD variants

with adaptive learning rates. It is also promising for direct policy
search reinforcement learning.
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